Given a FSM: A={2Vin,2Vout,I,2Vstate,R}A={2Vin,2Vout,I,2Vstate,R}

where Vin={a}Vin={a}, Vout={o}Vout={o}, Vstate={p,q}Vstate={p,q}, I=I=q,

R=R=(next(q)|q|p)&!(o->a)&next(p)

**a)**

**label** 0:; 1:p; 2:q; 3:p,q;

i.e., node s0-s3 represent states !p&!q, p&!q, !p&q and p&q, respectively.**inputs** {a},{};

i.e., two inputs represent a and !a, respectively.**outputs** {o},{};

i.e., two outputs represent o and !o, respectively.

After computing the DNF of midterms of transition relation, I got the following representation:

p ^ q ^ o ^ !a ^ !next(q) ^ next(p) v

p ^ q ^ o ^ !a ^ next(q) ^ next(p) v

p ^ !q ^ o ^ !a ^ !next(q) ^ next(p) v

p ^ !q ^ o ^ !a ^ next(q) ^ next(p) v

!p ^ q ^ o ^ !a ^ !next(q) ^ next(p) v

!p ^ q ^ o ^ !a ^ next(q) ^ next(p)

Therefore, I get this transition:

{p,q} ---- 0&!a --- {p}

{p,q} ---- 0&!a --- {p,q}

{p} ---- 0&!a --- {p}

{p} ---- 0&!a --- {p,q}

{q} ---- 0&!a --- {p}

{q} ---- 0&!a --- {p,q}

I got the below diagram:

Below is my answer:

init 2,3;

transitions (1,{},{o},1); (1,{},{o},3); (2,{},{o},1); (2,{},{o},3); (3,{},{o},1); (3,{},{o},3);

It says answer is wrong in the tool.

Not sure which part I have done wrong. can anyone help me on this?