Here you can ask questions and find or give answers to organizational, academic and other questions about studying computer science.

1.1k questions

1.3k answers

1.7k comments

558 users

0 votes

This is my solution but it's not correct. Could you please tell me what part is wrong?

in * TF "Emb. Sys. and Rob." by (1.7k points)

2 Answers

0 votes
 
Best answer

wow! This solution is well-structured and almost perfectly correct. You just forgot to add s1 for the second []x. Great work!

by (25.6k points)
selected by
+1 vote

Yes, good work that just has an unfortunate error at the end (as Martin wrote []x yields {s1} so that the final []x|y should be {s0;s1;s2;s5}).

You can check where you go wrong with the teaching tool https://es.cs.uni-kl.de/tools/teaching/ModelChecking.html where you need the following input in your case

    vars a,b;
    init 5,6;
    labels 0:a; 1:b; 2:a; 3:a; 4:; 5:a; 6:; 7:b; 
    transitions 0->4; 0->5; 2->0; 3->4; 4->0; 4->3; 4->4; 4->6; 4->7; 5->0; 6->4; 7->4;
and
        mu x.([]x | nu y.(a&a&<>y))
Then, you will get the following output that you can compare with your results:
 computing states of mu x:bool. ([] x | nu y:bool. (a & a & <> y))
    step 0 : x = {}
        〖x〗= {}
        〖[] x〗 = {s1}
        computing states of nu y:bool. (a & a & <> y)
            step 0 : y = {s0;s1;s2;s3;s4;s5;s6;s7}
                〖a〗= {s0;s2;s3;s5}
                〖a & a〗 = {s0;s2;s3;s5}
                〖y〗= {s0;s1;s2;s3;s4;s5;s6;s7}
                〖<> y〗 = {s0;s2;s3;s4;s5;s6;s7}
                〖a & a & <> y〗 = {s0;s2;s3;s5}
            step 1 : y = {s0;s2;s3;s5}
                〖y〗= {s0;s2;s3;s5}
                〖<> y〗 = {s0;s2;s4;s5}
                〖a & a & <> y〗 = {s0;s2;s5}
            step 2 : y = {s0;s2;s5}
                〖y〗= {s0;s2;s5}
                〖<> y〗 = {s0;s2;s4;s5}
                〖a & a & <> y〗 = {s0;s2;s5}
                〖y〗= {s0;s2;s5}
        fixpoint reached!
       〖nu y:bool. (a & a & <> y)〗 = {s0;s2;s5}
       〖[] x | nu y:bool. (a & a & <> y)〗 = {s0;s1;s2;s5}
    step 1 : x = {s0;s1;s2;s5}
        〖x〗= {s0;s1;s2;s5}
        〖[] x〗 = {s1;s2;s5}
        〖[] x | nu y:bool. (a & a & <> y)〗 = {s0;s1;s2;s5}
        〖x〗= {s0;s1;s2;s5}
    fixpoint reached!
    〖mu x:bool. ([] x | nu y:bool. (a & a & <> y))〗 = {s0;s1;s2;s5}
by (170k points)

Related questions

0 votes
1 answer
+1 vote
2 answers
0 votes
1 answer
0 votes
1 answer
0 votes
1 answer
Imprint | Privacy Policy
...