Identifying accepting states often leads to two kinds of problems in understanding:
a) It's often hard to understand accepting states coming from NFA/DFA. Accepting states in NFA/DFA are slightly different from accepting states in Omega automata. In both cases, we want to accept words. In both cases, we do so if our word yields an accepting path. In NFA/DFA, this path needs to end in an accepting state. In Omega automata, this path needs to touch this state in a certain temporal pattern. Here, this temporal pattern is FG.
b) Accepting states of an FG-automaton are often confused with states satisfying a property like EFG/EFEG. While both states in the example satisfy the temporal property EFG ¬p, only {}, the state satisfying ¬p, is called an accepting state.